Subject Code: AEC0601

Printed page:	Roll No:		
NOIDA INSTITUTE OF ENG	GINEERING AND TECHNOLOGY,	, GREATER NOID	A
(An Autonomous I	Institute Affiliated to AKTU, Luckno	ow)	
	B.Tech		
SEM: VI - TI	HEORY EXAMINATION (2024-20)	25)	
Sub	pject Digital Signal Processing		
Time: 3 Hours		Max. Marks:	100
General Instructions:			
IMP: Verify that you have received	question paper with correct course, code	e, branch etc.	
 (MCQ's) & Subjective type question 2. Maximum marks for each question 3. Illustrate your answers with neat 4. Assume suitable data if necessary 5. Preferably, write the answers in s 	on are indicated on right hand side of eac sketches wherever necessary. v.	ch question.	
	SECTION – A		20
1. Attempt all parts:-			
1-a. The value of W_4^{-1} is		(CO1, K1)	1
(a) 0			
(b) -j			
(c) j			
(d) 1			
1-b. DFT performs filtering operat	tion in	(CO1, K1)	1
(a) Time domain			
(b) Frequency domain			
(c) both time and frequence	cy domains		
(d) none of these			
1-c. Non-linearity in the relationsh	nip between Ω and ω is known as	(CO2, K1)	1
(a) aliasing			
(b) frequency warping			
(c) unwarping			
(d) frequency mixing			

Subject Code: AEC0601

1-d.	Butterworth filters Poles lies on	(CO2, K2)	1
	(a) ellipse		
	(b) circle		
	(c) both (a) and (b)		
	(d) none of the above		
1-e. For Rectangular win (a) 4π/N (b) 8π/N (c) 12π/N (d) Adjustable	For Rectangular window, the width of the main lobe is	(CO3, K1)	1
	(a) $4\pi/N$		
	(b) 8π/N		
	(c) $12\pi/N$		
	(d) Adjustable		
1-f.	For Blackman window, the peak side lobe in dB is	(CO3, K1)	1
	(a) -13		
	(b) -31		
	(c) -41		
	(d) -58		
_	The number of multipliers required for the realization of FIR systems is reduced if		
	we choose	(CO4), K2)	
	(a) direct form		
	(b) cascade form		
	(c) parallel form		
	(d) linear phase realization		
1-h.	The structure which in not used to realize to FIR filters	(CO4), K1)	1
	(a) direct form-I		
	(b) Linear phase		
	(c) cascade form		
	(d) Ladder form		
1-i.	Down sampling by a factor of D skips	(CO5), K1)	1
	(a) D samples		
	(b) $D-1$ samples		
	(c) no samples		
	(d) $D/2$ samples		
1-j.	If $x(n) = \{1, 2, 3, 4, 5, 6, 7,\}$, then $x(2n) =$	(CO5, K2)	1
	(a) {2, 4, 6, 8, 10,}		

Subject Code: **AEC0601**

(c) $\{1, 3, 5, 7, ...\}$ (d) $\{1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0 \dots\}$ 2. Attempt all parts:-2.a. Write the advantages of DSP over ASP. (CO1,K2) 2 2 2.b. Compare Butterworth and Chebyshev filters. (CO2,K2 2.c. Differentiate symmetric and antisymmetric FIR filters. (CO3,K2) 2 2.d. Explain the concept of recursive and non-recursive systems. 2 (CO4,K2) 2.e. Explain the concept of multirate signal processing. (CO5,K2) 2 SECTION - B 30 3. Answer any five of the following-3-a. Find the Circular convolution of the sequences 6 $x_1(n) = \{1, 1, 2, 2\}$ and $x_2(n) = \{1, 2, 3, 4\}$ (CO1, K3) Find the 4-point IDFT of $X(k) = \{3, (2+j), 1, (2-j)\}.$ 3-b. (CO1, K3) 6 3-c. Explain the Bilinear Transformation technique to convert analog low pass filter into 6 digital low pass filter in detail. (CO2,K2) 3-d. For the analog transfer function 6 $H(s) = \frac{1}{(s+1)(s+3)}$ determine H(z) using impulse invariant technique for T=1sec. (CO2, K3) 3-е. Compare FIR filter and IIR Filter. Also, state various disadvantages of FIR filter in 6 detail. (CO3, K2) 3-f. Explain FIR Linear phase realization in detail. (CO4, K2) 6 Explain the Decimation and Interpolation processes in multirate signal processing. 3-g. 6 (CO5, K2) SECTION - C 50 4. Answer any one of the following-4-a. Find the 4 point DFT of the sequence $x(n) = \{0, 1, 2, 3\}$ using 10 (a) DIT-FFT algorithm and (b) DIF-FFT algorithm. (CO1, K3) Explain the followings: (CO1), K3) 4-b. 10 a) Twiddle factor and its properties b) Circular Convolution of Two Sequences in time and frequency domains. 5. Answer any one of the following-

(b) $\{1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, ...\}$

- 5-a. Convert the analog filter with system function $Ha(s) = \frac{s+0.1}{\left(s+0.1\right)^2 + 16}$ into a digital IIR filter by means of the bilinear transformation. The digital filter is to have a resonant frequency of $\omega_r = \pi/2$.
- 5-b. Determine the order and the poles of a low-pass Butterworth filter that has a 10 1-dB attenuation in the passband, a cutoff frequency $\Omega_P = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40 dB or more for $\Omega > \Omega_S$. (CO2, K4)
- 6. Answer any one of the following-
- 6-a. Explain the frequency response of Linear phase FIR filter for Symmetrical impulse 10 response when N is odd. (CO3), K3)
- 6-b. The desired response of a low pass filter is $H_d(e^{j\omega}) = e^{-j2\omega} \ , \quad -\pi/4 \le \omega \le \pi/4$ $0 \quad , \quad \pi/4 \le |\omega| \le \pi$

Determine $H(e^{j\omega})$ for M = 5 using a rectangular window. (CO3,K3)

- 7. Answer any one of the following-
- 7-a. Realize the IIR filter

$$H(z) = \frac{3z^2 + 5z + 4}{z^2 + 6z + 8}$$

In Direct-I and ladder structures.

(CO4,K3)

7-b. An LTI system is described by the equation

$$y(n) + 2y(n-1) - y(n-2) = x(n)$$

Determine the cascade and parallel realization structures of the system. (CO4,K3)

- 8. Answer any one of the following-
- 8-a. Explain the folloings:

10

10

- (a) Two- channel Quadrature Mirror Filter bank,
- (b) Subband coding of speech signal. (CO5,K3)
- 8-b. What is adaptive filter? Given the system modelling described and using the single-weight adaptive filter y(n) = wx(n) to perform the system modelling task,
 - a) Set up the LMS algorithm to implement the adaptive filter, assuming that the initial w=0 and $\mu=0.5$.
 - b) Perform adaptive filtering to obtain y (0), y (1), y (2), and y (3) given

$$d(0) = 1$$
, $d(1) = 2$, $d(2) = -2$, $d(3) = 2$,

$$x(0) = 0.5, x(1) = 1, x(2) = -1, x(3) = 1$$
 (CO5,K4)